GAS-PHASE FLASH REACTIONS OF DIBORANE, TRIBORANE CARBONYL AND TETRABORANE WITH ALKYNES

Mark A. FOX*¹*, Robert GREATREX*2,**, Norman N. GREENWOOD*³* and Martin KIRK

School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K; e-mail: ¹ m.a.fox@durham.ac.uk, ² r.greatrex@chem.leeds.ac.uk, ³ n.n.greenwood@chem.leeds.ac.uk

> Received December 10, 1998 Accepted February 5, 1999

Dedicated with affection and admiration to Dr Stanislav Heřmánek on the occasion of his 70th birthday, in recognition of his outstanding contributions to boron chemistry.

Several known volatile *closo*-carboranes $(1,5-C_2B_3H_5, 1,6-C_2B_4H_6, 2,4-C_2B_5H_7, 1,10-C_2B_8H_{10})$ and their alkyl derivatives and ten new alkyl derivatives of these carboranes were identified from the thermal gas-phase flash reactions of B_2H_6 , B_3H_7CO and B_4H_{10} with ethyne, propyne and but-2-yne. In addition, $nido - C_AB₂H₆$ and its methyl derivatives were obtained from B_2H_6 -alkyne flash reactions. All carboranes found in these high-energy reactions are the most thermally stable isomers of their class. The non-isolable borane ${B_2H_7}$ is suggested as the initiator in all thermal flash reactions reported here.

Key words: Boranes; Carboranes; Alkynes; Gas-phase reactions; Flash reactions.

During the early 1960s, the first small carboranes, $1,5-C_2B_3H_5$ (1), $1,2-C_2B_4H_6$ (2), $1,6-C_2B_4H_6$ (3) and $2,4-C_2B_5H_7$ (4), were reported as low-yield products from electric discharge reactions of pentaborane(9), B5H9, and ethyne1–3. Grimes later identified several more *closo*-carboranes from flash and electric discharge reactions of diborane and ethyne in the presence of helium^{4,5}. They include various monomethyl derivatives of 1,5-C₂B₃H₅, 1,6-C₂B₄H₆ and 2,4-C₂B₅H₇ but a claimed dimethyl derivative 5 of the unknown parent *closo*-carborane, $1,2-C_2B_3H_5$, was later discounted (see below).

$$
B_2H_6 + HC = CH \rightarrow 1,5-C_2B_3H_5 (1), 1,6-C_2B_4H_6 (3), 2,4-C_2B_5H_7 (4),C,3-Me_2-1,2-C_2B_3H_3 (5), 2-Me-1,5-C_2B_3H_4 (6),2-Me-1,6-C_2B_4H_5 (7), 1-Me-2,4-C_2B_5H_6 (8),3-Me-2,4-C_2B_5H_6 (9), 5-Me-2,4-C_2B_5H_6 (10)
$$

More small *closo*-carboranes were obtained from the thermal flash gas-phase reactions of tetraborane(10), B_4H_{10} , with alkynes at 100 °C as summarised below^{6,7}. In addition, the larger *closo*-carboranes $1,6-C_2B_8H_{10}$

(11) and presumably one of six isomers of B -Me-1,6-C₂B₈H₉ (12) were obtained with ethyne. Thermal flash reactions of pentaborane(11), B_5H_{11} , with ethyne and propyne gave the same carboranes as flash reactions of B_4H_{10} with ethyne and propyne, respectively.

Collect. Czech. Chem. Commun. (Vol. 64) (1999)

$$
B_4H_{10} + HC \equiv CH \rightarrow 3, 4, 6, 8, 9, 10, 1, 6-C_2B_8H_{10} (11), B-Me-1, 6-C_2B_8H_9 (12),
$$

2-Me-2, 4-C_2B₅H₆ (13)

 B_4H_{10} + MeC≡CH \rightarrow **1**, **4**, **5**, **6**, **13**, 1-Me-1,6-C₂B₄H₅ (**14**), $1,7-Me_2-2,4-C_2B_5H_5$ (15)

 $B_4H_{10} + \text{MeC} \equiv \text{CMe} \rightarrow 1, 4, 5, 6, 13, 14, 15, 1 - Et-2, 4-C_2B_5H_6$ (16)

The compound originally thought to be C , $3-Me₂$ - 1 , $2-C₂B₃H₃$ (5), has been shown by a recent detailed theoretical and experimental investigation, to be unlikely to have a stable existence under the reported conditions of synthesis, and has properties more consistent with its formulation as 2,3-Me₂-1,5-C₂B₃H₃ (18) (ref.⁸). Here we report the many known and new carboranes identified from the thermal flash reactions of B_2H_6 , B_3H_7CO and B_4H_{10} with the alkynes, HC≡CH, MeC≡CH and MeC≡CMe.

EXPERIMENTAL

Standard high-vacuum systems fitted with greaseless O-ring taps and spherical joints (J. Young (Scientific Glassware) Ltd.) were used throughout. ^{11}B , ^{11}B ^{11}H }, 2D ^{11}B COSY, ¹H and ¹H₁¹¹B selective}⁻¹H subtraction spectra were obtained on a Bruker AM-400 NMR instrument with CDCl₃ as lock solvent at 298 K (ref.⁹). Chemical shifts reported here are referenced to $BF_3·Et_2O$ 0.0 ppm for ¹¹B and TMS 0.00 ppm for ¹H. The boranes B_2H_6 , B_3H_7CO and B_4H_{10} were all obtained as described in the literature^{10–12}. The alkynes, HC≡CH (BOC), MeC≡CH (Cambrian Gases) and MeC≡CMe (Lancaster Synthesis) were purchased commercially.

General Procedure for Gas-Phase Thermal Flash Reactions of Diborane and Tetraborane with Ethyne, Propyne and But-2-yne

Typically, 6 mmol of borane and 6 mmol of alkyne were condensed at –196 °C (liquid nitrogen) into a 650 ml round-bottomed flask and then warmed quickly to 100 °C by means of a heated oil bath. As the temperature approached 100 °C, the gas mixture became cloudy and then flashed, giving tan solids which covered the inner flask walls. The flask was then cooled to –196 °C and hydrogen was removed by pumping. A representative sample of the volatiles was then transferred to a resealable Young's tube together with $CDCl₃$, and the remainder subjected to a cold-column fractionation¹³. Species leaving the column were sampled continuously *via* a glass capillary of length 200 mm and internal diameter 0.1 mm (Jencons Scientific Ltd.) and monitored by means of a Kratos MS30 mass spectrometer fitted with an MSS data system. Volatile carborane fractions with different mass cut-offs were collected and transferred to resealable Young's NMR tubes. These fractions were characterized by detailed 11 B and 1 H NMR spectroscopy (Table I).

TABLE I

128 MHz ¹¹B and 400 MHz ¹H NMR data for volatile carboranes identified from borane– alkyne flask reactions

^a Data reported here are in agreement with boron and/or proton NMR data in the literature. Where no reference is given, data are reported for the first time. *^b* Not recorded. *^c* Value uncertain due to peak overlap or poorly resolved peaks.

Flash Reaction of B_3H_7CO and Propyne

In a typical reaction, B_2H_7CO (0.35 mmol) was measured at -34 °C in a 196 ml flask and then MeC≡CH (0.35 mmol) was condensed into the reaction vessel. The mixture was warmed to -20 °C using an acetone-CO₂ slush and suddenly flashed. The tan-coated flask was then cooled to -196 °C and non-condensable gases (presumably CO and H₂) were pumped away. This process was repeated several times and the combined volatile products were subjected to cold-column fractionation and NMR spectroscopy as described in the previous method.

RESULTS AND DISCUSSION

The volatile carboranes produced in the thermal flash reactions of B_2H_6 with the alkynes HC≡CH, MeC≡CH and MeC≡CMe are listed in Table II, together with their yields. Total yields of volatile carboranes from these reactions were only 2–3% with respect to the amount of boron consumed from B_2H_6 . The major products were tan solids of polymeric nature and were not characterised. Thirty-two known or new compounds were identified from ¹¹B and ¹H NMR data (shown in Table I) as $1,5-C_2B_3H_5$, $1,6-C_2B_4H_6$, $2,4-C_2B_5H_7$, 1,10-C₂B₈H₁₀, 2,3,4,5-C₄B₂H₆ or their derivatives. Further information on these compounds is in Table II.

The *closo*-carboranes reported here are theoretically and experimentally the most thermodynamically stable isomers¹⁴⁻¹⁹. Ratios of the *B*-monomethyl and *B*-dimethyl substituted derivatives of $2,4$ -C₂B₅H₇ observed in our flash reactions fit well with the final products of the reported thermal rearrangements of *B*-monomethyl and *B*-dimethyl derivatives of $2,4-C_2B_5H_7$, **8-10** and **27-29** (refs²⁰⁻²⁴). The *nido*-tetracarbaboranes **33-38** observed here must also be thermally robust to survive such high-energy reactions.

Thermal flash reactions of B_4H_{10} with the three alkynes gave nearly identical products and yields as the B_2H_6 -alkyne reactions. Exceptions are the $nido - C_4B_2H_6$ derivatives, which are not observed among the products in the tetraborane–alkyne reactions. We believe that the *nido*-carboranes **33**–**38** were derived from compounds generated by B_2H_6 hydroboration of the alkyne²⁵ in the rapid warm-up period prior to the flash point in B_2H_6 alkyne reactions.

The *closo*-carboranes, $1,6-C_2B_8H_{10}$ (11) and *B*-Me-1,6-C₂B₈H₉ (12) reported^{6,7} from the thermal flash reactions of B_4H_{10} and HC≡CH are re-identified here as $1,10-C_2B_8H_{10}$ (31) and 2-Me-1,10-C₂B₈H₉ (32), respectively. In addition, the carborane C , 3 -Me₂-1, 2 - $C_2B_3H_3$ (5) reported⁷ from the flash reactions of B_4H_{10} with MeC≡CH and MeC≡CMe is re-identified here as 2,3-Me₂-1,5-C₂B₃H₃ (18) (ref.⁸). The derivatives 1,7-Me₂-2,4-C₂B₅H₅

(**15**) and 1-Et-2,4-C₂B₅H₆ (**16**) reported⁷ as products of the reaction between B_4H_{10} and MeC≡CMe were not observed here and, based on their yields, we believe that these compounds are actually two of the isomers of $Me₂$ -2,4-C₂B₅H₅, reported here as **27-29**.

The unstable compound B_3H_7CO was found to undergo a flash reaction at –20 °C with propyne, MeC≡CH, to give *closo*-carboranes identical to those obtained from the B_4H_{10} –MeC≡CH thermal flash reaction. The similarity in the products of the B_2H_6 –alkyne, B_3H_7CO –alkyne and B_4H_{10} – alkyne flash reactions suggests that they are initiated by a common borane intermediate, and there is good reason to believe that this is the nonisolable species ${B_3H_7}$. This intermediate plays an important role in the early stages of thermal decomposition of B_2H_6 at *ca* 100 °C (ref.²⁶) and the latter is known to be formed in the thermolysis of B_4H_{10} at 100 °C (ref.²⁷). The intermediate ${B_3H_7}$ is also likely to be formed in the initial dissociation step of B_3H_7CO , and this is known to occur at the much lower temperature of -30 °C (ref.¹¹). Significantly, the flash reactions involving B_2H_6 and B_4H_{10} occur at *ca* 100 °C, whereas that involving B_3H_7CO is initiated at *ca* -20 °C. The non-isolable borane ${B_3H_7}$ is therefore a good candidate as the initiator for the flash reactions described here. Interestingly, a recent computational study²⁸ on borane-ethyne reactions includes an addition (not hydroborated) product from ${B_3H_7}$ and HC≡CH, which is formed with little or no barrier, as an initial step to carborane formation.

Volatile carboranes identified from diborane–alkyne flash reactions. Yields are percentages of the total volatile carborane fraction and are rounded to the nearest integer (tr, trace)

TABLE II (*Continued*)

CONCLUSIONS

Ten new alkyl derivatives of the volatile *closo-carboranes* $1,5-C_2B_3H_5$, $1,6-C_2B_4H_6$, $2,4-C_2B_5H_7$, $1,10-C_2B_8H_{10}$ have been identified among the products of thermal gas-phase flash reactions of B_2H_6 , B_3H_7CO and B_4H_{10} with ethyne, propyne and but-2-yne. The parent carboranes and many derivatives reported previously were also present, but five of these products have been re-identified. In addition, $nido - C_4B_2H_6$ and its methyl derivatives were obtained from the B_2H_6 -alkyne flash reactions. All carboranes found in these high-energy reactions are the most thermally stable isomers of their class. It is suggested that the non-isolable borane ${B_3H_7}$ is the initiator in all thermal flash reactions reported here.

REFERENCES

- 1. Shapiro I., Good C. D., Williams R. E.: *J. Am. Chem. Soc.* **1962**, *84*, 3837.
- 2. Shapiro I., Keilin B., Williams R. E., Good C. D.: *J. Am. Chem. Soc*. **1963**, *85*, 3167.
- 3. Williams R. E., Good C. D., Shapiro I.: *140th Meeting of the American Chemical Society, Chicago, September 1961*. Abstracts of the Meeting No. 14N, p. 36.
- 4. Grimes R. N.: *J. Am. Chem. Soc*. **1966**, *88*, 1070.
- 5. Grimes R. N.: *J. Am. Chem. Soc*. **1966**, *88*, 1895.
- 6. Grimes R. N., Bramlett C. L.: *J. Am. Chem. Soc*. **1967**, *89*, 2557.
- 7. Grimes R. N., Bramlett C. L., Vance R. L.: *Inorg. Chem*. **1968**, *8*, 55.
- 8. Hofmann M., Fox M. A., Greatrex R., Schleyer P. v. R., Bausch J. W., Williams R. E.: *Inorg. Chem*. **1996**, *35*, 6170.
- 9. a) Fontaine X. L. R., Kennedy J. D.: *J. Chem. Soc., Dalton Trans.* **1987**, 1573; b) Fontaine X. L. R., Kennedy J. D., McGrath M., Spalding T. R.: *Magn. Reson. Chem*. **1991**, *29*, 711.
- 10. Freeguard G. F., Long L. H.: *Chem. Ind*. **1965**, 471.
- 11. Glore J. D., Rathke J. W., Schaeffer R.: *Inorg. Chem*. **1973**, *12*, 2175.
- 12. Toft M. A., Leach J. B., Himpsl F. L., Shore S. G.: *Inorg. Chem*. **1982**, *21*, 1952.
- 13. a) Dobson J., Schaeffer R.: *Inorg. Chem.* **1970**, *9*, 2183; b) Shriver D. F., Drezdzon M. A.: *The Manipulation of Air-Sensitive Compounds*, 2nd ed., p. 193. Wiley–Interscience, New York 1986.
- 14. Onak T., Drake R. P., Dunks G. B.: *Inorg. Chem*. **1964**, *3*, 1686.
- 15. Beck J. S., Sneddon L. G.: *Inorg. Chem*. **1990**, *29*, 295.
- 16. Tebbe F. N., Garrett P. M., Young D. C., Hawthorne M. F.: *J. Am. Chem. Soc*. **1966**, *88*, 609.
- 17. Garrett P. M., Smart J. C., Ditta G. S., Hawthorne M. F.: *Inorg. Chem*. **1969**, *8*, 1907.
- 18. Rietz R. R., Schaeffer R., Walter E.: *J. Organomet. Chem*. **1973**, *63*, 1.
- 19. a) Jemmis E. D.: *J. Am. Chem. Soc*. **1982**, *104*, 7017; b) Ott J. J., GimarcB. M.: *J. Am. Chem. Soc.* **1986**, *108*, 4303; c) Ott J. J., Gimarc B. M.: *J. Comput. Chem*. **1986**, *7*, 673.
- 20. Fung A. P., Onak T.: *J. Am. Chem. Soc*. **1977**, *99*, 5512.
- 21. Onak T., Fung A. P., Siwapinyoyos G., Leach J. B.: *Inorg. Chem*. **1979**, *18*, 2878.
- 22. Oh B., Onak T.: *Inorg. Chem*. **1982**, *21*, 3150.
- 23. O'Gorman E., Banuelos T., Onak T.: *Inorg. Chem*. **1988**, *27*, 912.
- 24. Ott J. J., Brown C. A., GimarcB. M.: *Inorg. Chem*. **1989**, *28*, 4269.
- 25. Lindner H. H., Onak T.: *J. Am. Chem. Soc.* **1966**, *88*, 1886.
- 26. Greatrex R., Greenwood N. N., Lucas S. M.: *J. Am. Chem. Soc*. **1989**, *111*, 8721.
- 27. Attwood M. D., Greatrex R., Greenwood N. N.: *J. Chem. Soc., Dalton Trans*. **1989**, 391.
- 28. a) McKee M. L.: *J. Am. Chem. Soc.* **1995**, *117*, 8001; b) McKee M. L.: *J. Am. Chem. Soc*. **1996**, *118*, 421.
- 29. Dobbie R. C., DiStefano E. W., Black M., Leach J. B., Onak T.: *J. Organometal. Chem*. **1976**, *114*, 233.
- 30. Onak T., Gerhart F. J., Williams R. E.: *J. Am. Chem. Soc.* **1963**, *85*, 3378.
- 31. a) Onak T., Wong G. T. F.: *J. Am. Chem. Soc*. **1970**, *92*, 5226; b) Groszek E., Leach J. B., Wong G. T. F., Ungermann C., Onak T.: *Inorg. Chem*. **1971**, *10*, 2770.
- 32. Miller V. R., Grimes R. N.: *Inorg. Chem*. **1972**, *11*, 862.
- 33. Schleyer P. v. R., Gauss J., Bühl M., Greatrex R., Fox M. A.: *J. Chem. Soc., Chem. Commun*. **1993**, 1766.
- 34. Onak T., Wan E.: *J. Chem. Soc., Dalton Trans.* **1974**, 665.
- 35. Takimoto C., Siwapinyoyos G., Fuller K., Fung A. P., Liauw L., Jarvis W., Millhauser G., Onak T.: *Inorg. Chem*. **1980**, *19*, 107.
- 36. Olsen R. G., Grimes R. N.: *Inorg. Chem*. **1971**, *10*, 1103.
- 37. Abdou Z. J., Abdou G., Onak T., Lee S.: *Inorg. Chem*. **1986**, *25*, 2678.
- 38. Nam W., Onak T.: *Inorg. Chem*. **1987**, *26*, 1581.