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Several known volatile closo-carboranes (1,5-C2B3H5, 1,6-C2B4H6, 2,4-C2B5H7, 1,10-C2B8H10)
and their alkyl derivatives and ten new alkyl derivatives of these carboranes were identified
from the thermal gas-phase flash reactions of B2H6, B3H7CO and B4H10 with ethyne,
propyne and but-2-yne. In addition, nido-C4B2H6 and its methyl derivatives were obtained
from B2H6-alkyne flash reactions. All carboranes found in these high-energy reactions are
the most thermally stable isomers of their class. The non-isolable borane {B3H7} is suggested
as the initiator in all thermal flash reactions reported here.
Key words: Boranes; Carboranes; Alkynes; Gas-phase reactions; Flash reactions.

During the early 1960s, the first small carboranes, 1,5-C2B3H5 (1),
1,2-C2B4H6 (2), 1,6-C2B4H6 (3) and 2,4-C2B5H7 (4), were reported as
low-yield products from electric discharge reactions of pentaborane(9),
B5H9, and ethyne1–3. Grimes later identified several more closo-carboranes
from flash and electric discharge reactions of diborane and ethyne in the
presence of helium4,5. They include various monomethyl derivatives of
1,5-C2B3H5, 1,6-C2B4H6 and 2,4-C2B5H7 but a claimed dimethyl derivative 5
of the unknown parent closo-carborane, 1,2-C2B3H5, was later discounted
(see below).

B2H6 + HC≡CH → 1,5-C2B3H5 (1), 1,6-C2B4H6 (3), 2,4-C2B5H7 (4),
C,3-Me2-1,2-C2B3H3 (5), 2-Me-1,5-C2B3H4 (6),
2-Me-1,6-C2B4H5 (7), 1-Me-2,4-C2B5H6 (8),
3-Me-2,4-C2B5H6 (9), 5-Me-2,4-C2B5H6 (10)
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More small closo-carboranes were obtained from the thermal flash
gas-phase reactions of tetraborane(10), B4H10, with alkynes at 100 °C as
summarised below6,7. In addition, the larger closo-carboranes 1,6-C2B8H10
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FIG. 1
Carboranes identified from reported high-energy borane–alkyne reactions
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(11) and presumably one of six isomers of B-Me-1,6-C2B8H9 (12) were ob-
tained with ethyne. Thermal flash reactions of pentaborane(11), B5H11,
with ethyne and propyne gave the same carboranes as flash reactions of
B4H10 with ethyne and propyne, respectively.
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FIG. 1
(Continued)
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B4H10 + HC≡CH → 3, 4, 6, 8, 9, 10, 1,6-C2B8H10 (11), B-Me-1,6-C2B8H9 (12),
2-Me-2,4-C2B5H6 (13)

B4H10 + MeC≡CH → 1, 4, 5, 6, 13, 1-Me-1,6-C2B4H5 (14),
1,7-Me2-2,4-C2B5H5 (15)

B4H10 + MeC≡CMe → 1, 4, 5, 6, 13, 14, 15, 1-Et-2,4-C2B5H6 (16)

The compound originally thought to be C,3-Me2-1,2-C2B3H3 (5), has been
shown by a recent detailed theoretical and experimental investigation, to
be unlikely to have a stable existence under the reported conditions of syn-
thesis, and has properties more consistent with its formulation as
2,3-Me2-1,5-C2B3H3 (18) (ref.8). Here we report the many known and new
carboranes identified from the thermal flash reactions of B2H6, B3H7CO and
B4H10 with the alkynes, HC≡CH, MeC≡CH and MeC≡CMe.

EXPERIMENTAL

Standard high-vacuum systems fitted with greaseless O-ring taps and spherical joints
(J. Young (Scientific Glassware) Ltd.) were used throughout. 11B, 11B{1H}, 2D 11B-11B COSY,
1H and 1H{11B selective}-1H subtraction spectra were obtained on a Bruker AM-400 NMR in-
strument with CDCl3 as lock solvent at 298 K (ref.9). Chemical shifts reported here are refer-
enced to BF3·Et2O 0.0 ppm for 11B and TMS 0.00 ppm for 1H. The boranes B2H6, B3H7CO
and B4H10 were all obtained as described in the literature10–12. The alkynes, HC≡CH (BOC),
MeC≡CH (Cambrian Gases) and MeC≡CMe (Lancaster Synthesis) were purchased commer-
cially.

General Procedure for Gas-Phase Thermal Flash Reactions of Diborane and Tetraborane
with Ethyne, Propyne and But-2-yne

Typically, 6 mmol of borane and 6 mmol of alkyne were condensed at –196 °C (liquid nitro-
gen) into a 650 ml round-bottomed flask and then warmed quickly to 100 °C by means of a
heated oil bath. As the temperature approached 100 °C, the gas mixture became cloudy and
then flashed, giving tan solids which covered the inner flask walls. The flask was then
cooled to –196 °C and hydrogen was removed by pumping. A representative sample of the
volatiles was then transferred to a resealable Young’s tube together with CDCl3, and the re-
mainder subjected to a cold-column fractionation13. Species leaving the column were sam-
pled continuously via a glass capillary of length 200 mm and internal diameter 0.1 mm
(Jencons Scientific Ltd.) and monitored by means of a Kratos MS30 mass spectrometer fitted
with an MSS data system. Volatile carborane fractions with different mass cut-offs were col-
lected and transferred to resealable Young’s NMR tubes. These fractions were characterized
by detailed 11B and 1H NMR spectroscopy (Table I).
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TABLE I
128 MHz 11B and 400 MHz 1H NMR data for volatile carboranes identified from borane–
alkyne flask reactions

Ref.a δ(11B)(J, Hz; assignment) δ(1H{11B})

C2B3H5 and derivatives

1 33,34 3.5 (189; B2, B3, B4) 5.59 (CH), 3.90 (BH)

6 29 9.3 (s; B2), 7.4 (185; B3, B4) 5.23 (CH), 4.06 (BH), 0.38 (CH3)

17 3.0 (186; B2, B3, B4) 5.29 (CH), 3.76 (BH), 2.28 (CH3)

18 8,29 13.1 (s; B2, B3), 11.2 (180; B4) 4.86 (CH), 4.20 (BH), 0.40 (CH3)

19 8 8.3 (s; B2), 6.3 (182; B3, B4) 4.94 (CH), 3.88 (BH), 2.12 (CCH3), 0.31 (BCH3)

20 8 2.5 (186; B2, B3, B4) 3.80 (BH), 2.21 (CH3)

21 29 16.9 (s; B2, B3, B4) 4.49 (CH), 0.43 (CH3)

C2B4H6 and derivatives

3 35 –17.5 (191; B2, B3, B4, B5) 3.10 (CH), 1.94 (BH)

7 –8.4 (s; B2), –16.8 (188; B3, B5),
–23.3 (188; B3, B5)

3.07 (CH), 1.86 (B3H, B5H), 1.72 (B4H),
0.37 (CH3)

14 –16.3 (190; B2, B3, B4, B5) 2.80 (CH), 1.94 (BH), 1.50 (CH3)

22 –8.1 (s; B2, B3),
–22.5 (186; B4, B5)

2.98 (CH), 1.70 (BH), 0.31 (CH3)

23 –14.4 (s; B2, B4),
–16.1 (183; B3, B5)

2.98 (CH), 1.85 (BH), 0.31 (CH3)

24 –7.6 (s; B2), –15.6 (186; B3, B5),
–21.7 (186; B4)

2.80 (CH), 1.84 (B3H, B5H), 1.72 (B4H)
1.49 (CCH3), 0.33 (BCH3)

25 36 –15.0 (192; B2, B3, B4, B5) 1.96 (BH), 1.44 (CH3)

26 –16.9 (189; B2, B3, B4, B5) b

C2B5H7 and derivatives

4 37 7.2 (179; B3), 3.9 (169; B5, B6)
–21.5 (181; B1, B7)

5.66 (CH), 4.98 (B3H), 4.09 (B5H, B6H),
0.08 (B1H, B7H)

8 21,22 8.3 (178; B3), 4.0 (169c; B5, B6)
–11.6 (s; B1), –27.4 (180; B7)

5.66(CH), 4.91 (B3H), 4.05 (B5H, B6H),
–0.11 (B7H), –0.47 (CH3)

9 21,22 14.2 (s; B3), 3.4 (169; B5, B6)
–20.2 (177; B1, B7)

5.30 (CH), 3.97 (B5H, B6H), 1.02 (CH3),
0.17 (B1H, B7H)

10 21,22 11.5 (s; B5), 6.7 (181; B3),
2.3 (170; B6), –20.9 (176; B1, B7)

5.49 (C2H), 5.26 (C4H), 4.85 (B3H),
3.86 (B6H), 0.72 (CH3), 0.16 (B1H, B7H)
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TABLE I
(Continued)

Ref.a δ(11B)(J, Hz; assignment) δ(1H{11B})

13 7.7 (182; B3), 6.1 (172c, B6),
3.8 (169; B5), –19.5 (179; B1, B7)

5.52 (CH), 4.75 (B3H), 3.91 (B5H),
3.97 (B6H), 2.18 (CH3), 0.22 (B1H, B7H)

27 21 14.9 (s; B3), 3.8 (171; B5, B6),
–11.0 (s; B1), –25.9 (179; B7)

5.26 (CH), 3.93 (B5H, B6H),
0.98 (B3CH3), 0.02 (B7H), –0.47 (B1CH3)

28 21 13.6 (s; B3), 11.3 (s; B5), 1.9c

(168c; B6), –19.5 (177; B1, B7)
5.12 (C2H), 4.93 (C4H), 3.82 (B6H),
0.92 (B3CH3), 0.68 (B5CH3), 0.23 (B1H, B7H)

29 21 11.3 (s; B5), 7.8 (181; B3),
1.9c (168c; B6), –10.5 (s; B1),
–26.6 (180; B7)

5.48 (C2H), 5.26 (C4H), 4.71 (B3H),
3.82 (B6H), 0.68 (B5CH3), –0.03 (B7H),
–0.47 (B1CH3)

30 7.2 (182; B3), 5.4 (171; B6),
3.5 (169; B5), –20.0 (180; B1, B7)

5.48 (CH), 4.71 (B3H), 4.02 (B6H),
3.93 (B5H), 2.47 (q, 3JHH = 7 Hz; CH2–CH3),
1.18 (t, 3JHH = 7 Hz; CH2–CH3),
0.20 (B1H, B7H)

C2B8H10 and derivatives

31 17,38 –12.7 (161; B2–B9) 7.00 (CH), 2.00 (BH)

32 –3.5 (s; B2), –10.7 (163; B3, B5),
–11.2 (162; B7, B8), –12.2 (164;
B6, B9), –15.3 (161; B4)

6.83 (C10H), 6.62 (C1H), 2.15 (B3H, B5H),
2.04 (B7H, B8H), 1.94 (B6H, B9H),
1.80 (B4H), 0.18 (CH3)

C4B2H6 and derivatives

33 31 10.8 (145; B6), –60.6 (206; B1) 5.96 (C3H, C4H), 4.72 (C2H, C5H),
3.76 (B6H), –0.81 (B1H)

34 12.4 (148; B6), –50.9 (s; B1) 5.83 (C3H, C4H), 4.37 (C2H, C5H),
0.47 (B6CH3), –0.74 (B1H)

35 19.8 (s; B1), –59.4 (204; B1) 5.99 (C3H, C4H), 4.49 (C2H, C5H),
3.82 (B6H), –0.31 (B1CH3)

36 10.8c (B6), –58.5 (206; B1) b

37 10.8c (B6), –57.0 (205; B1) b

38 20.6 (s; B1), –50.0 (s; B1) b

a Data reported here are in agreement with boron and/or proton NMR data in the literature.
Where no reference is given, data are reported for the first time. b Not recorded. c Value un-
certain due to peak overlap or poorly resolved peaks.



Flash Reaction of B3H7CO and Propyne

In a typical reaction, B3H7CO (0.35 mmol) was measured at –34 °C in a 196 ml flask and
then MeC≡CH (0.35 mmol) was condensed into the reaction vessel. The mixture was
warmed to –20 °C using an acetone–CO2 slush and suddenly flashed. The tan-coated flask
was then cooled to –196 °C and non-condensable gases (presumably CO and H2) were
pumped away. This process was repeated several times and the combined volatile products
were subjected to cold-column fractionation and NMR spectroscopy as described in the pre-
vious method.

RESULTS AND DISCUSSION

The volatile carboranes produced in the thermal flash reactions of B2H6
with the alkynes HC≡CH, MeC≡CH and MeC≡CMe are listed in Table II, to-
gether with their yields. Total yields of volatile carboranes from these reac-
tions were only 2–3% with respect to the amount of boron consumed from
B2H6. The major products were tan solids of polymeric nature and were not
characterised. Thirty-two known or new compounds were identified from
11B and 1H NMR data (shown in Table I) as 1,5-C2B3H5, 1,6-C2B4H6,
2,4-C2B5H7, 1,10-C2B8H10, 2,3,4,5-C4B2H6 or their derivatives. Further infor-
mation on these compounds is in Table II.

The closo-carboranes reported here are theoretically and experimentally
the most thermodynamically stable isomers14–19. Ratios of the B-mono-
methyl and B-dimethyl substituted derivatives of 2,4-C2B5H7 observed in
our flash reactions fit well with the final products of the reported thermal
rearrangements of B-monomethyl and B-dimethyl derivatives of
2,4-C2B5H7, 8–10 and 27–29 (refs20–24). The nido-tetracarbaboranes 33–38
observed here must also be thermally robust to survive such high-energy re-
actions.

Thermal flash reactions of B4H10 with the three alkynes gave nearly iden-
tical products and yields as the B2H6-alkyne reactions. Exceptions are the
nido-C4B2H6 derivatives, which are not observed among the products in the
tetraborane–alkyne reactions. We believe that the nido-carboranes 33–38
were derived from compounds generated by B2H6 hydroboration of the
alkyne25 in the rapid warm-up period prior to the flash point in B2H6–
alkyne reactions.

The closo-carboranes, 1,6-C2B8H10 (11) and B-Me-1,6-C2B8H9 (12) re-
ported6,7 from the thermal flash reactions of B4H10 and HC≡CH are
re-identified here as 1,10-C2B8H10 (31) and 2-Me-1,10-C2B8H9 (32), respec-
tively. In addition, the carborane C,3-Me2-1,2-C2B3H3 (5) reported7 from
the flash reactions of B4H10 with MeC≡CH and MeC≡CMe is re-identified
here as 2,3-Me2-1,5-C2B3H3 (18) (ref.8). The derivatives 1,7-Me2-2,4-C2B5H5
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(15) and 1-Et-2,4-C2B5H6 (16) reported7 as products of the reaction between
B4H10 and MeC≡CMe were not observed here and, based on their yields, we
believe that these compounds are actually two of the isomers of
Me2-2,4-C2B5H5, reported here as 27–29.
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FIG. 2
Carboranes identified from borane–alkyne flash reactions in this study
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FIG. 2
(Continued)
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The unstable compound B3H7CO was found to undergo a flash reaction
at –20 °C with propyne, MeC≡CH, to give closo-carboranes identical to
those obtained from the B4H10–MeC≡CH thermal flash reaction. The simi-
larity in the products of the B2H6–alkyne, B3H7CO–alkyne and B4H10–
alkyne flash reactions suggests that they are initiated by a common borane
intermediate, and there is good reason to believe that this is the non-
isolable species {B3H7}. This intermediate plays an important role in the
early stages of thermal decomposition of B2H6 at ca 100 °C (ref.26) and the
latter is known to be formed in the thermolysis of B4H10 at 100 °C (ref.27).
The intermediate {B3H7} is also likely to be formed in the initial dissociation
step of B3H7CO, and this is known to occur at the much lower temperature
of –30 °C (ref.11). Significantly, the flash reactions involving B2H6 and B4H10
occur at ca 100 °C, whereas that involving B3H7CO is initiated at ca –20 °C.
The non-isolable borane {B3H7} is therefore a good candidate as the initiator
for the flash reactions described here. Interestingly, a recent computational
study28 on borane–ethyne reactions includes an addition (not hydro-
borated) product from {B3H7} and HC≡CH, which is formed with little or no
barrier, as an initial step to carborane formation.
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FIG. 2
(Continued)
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TABLE II
Volatile carboranes identified from diborane–alkyne flash reactions. Yields are percentages of
the total volatile carborane fraction and are rounded to the nearest integer (tr, trace)

Compound Ref. HC≡CH MeC≡CH MeC≡CMe

1,5-C2B3H5 and derivatives

1 Parent 1 11 4

6 2-Me 5 4 11 4

17 1-Me new 3 4

18 2,3-Me2- 29 1 6 9

19 1,2-Me2- 8 3 6

20 1,5-Me2- 8 1 3

21 2,3,4-Me3- 29 3 3

Total 16 31 29

1,6-C2B4H6 and derivatives

3 Parent 2 7 3

7 2-Me- 5 1 2 1

14 1-Me- 7 tr 5 4

22 2,3-Me2- new 1 3

23 2,4-Me2- new tr 1

24 1,2-Me2- new tr 3

25 1,6-Me2- 30 tr 1

26 1-Et- new 1

Total 8 11 13

2,4-C2B5H7 and derivatives

4 Parent 3 32 7 6

8 1-Me- 5 6 6 5

9 3-Me- 5 6 6 5

10 5-Me- 5 5 4 3

13 2-Me 6 9 10 7

27 1,3-Me2- 21 2 6 6

28 3,5-Me2- 21 1 3 3

29 1,5-Me2- 21 1 3 3

30 2-Et- new 1 2

Total 62 46 40



CONCLUSIONS

Ten new alkyl derivatives of the volatile closo-carboranes 1,5-C2B3H5,
1,6-C2B4H6, 2,4-C2B5H7, 1,10-C2B8H10 have been identified among the
products of thermal gas-phase flash reactions of B2H6, B3H7CO and B4H10
with ethyne, propyne and but-2-yne. The parent carboranes and many de-
rivatives reported previously were also present, but five of these products
have been re-identified. In addition, nido-C4B2H6 and its methyl derivatives
were obtained from the B2H6–alkyne flash reactions. All carboranes found
in these high-energy reactions are the most thermally stable isomers of
their class. It is suggested that the non-isolable borane {B3H7} is the initiator
in all thermal flash reactions reported here.
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